『電気・電子の基礎マスター』正誤表

ISBN: 978-4-61004-6 版刷:第1版第1刷~第6刷正誤表作成日: 2023年10月5日

ページ	箇所	誤	正
86	参考 (枠内) 3~5行目	$E_{av} = \frac{2}{T} \int_{0}^{\frac{2}{T}} E_{m} \sin \omega t dt$ $= \frac{\omega}{\pi} \int_{0}^{\frac{2}{T}} E_{m} \sin \omega t dt$ $= \frac{E_{m}}{\pi} [-\cos \omega t]_{0}^{\frac{\pi}{\omega}} = \frac{2}{\pi} E_{m}$	$E_{av} = \frac{1}{\pi} \int_0^{\pi} E_m \sin \omega t d\omega t$ $= \frac{E_m}{\pi} \int_0^{\pi} \sin \omega t d\omega t$ $= \frac{E_m}{\pi} [-\cos \omega t]_0^{\pi}$ $= \frac{E_m}{\pi} \{1 - (1)\} = \frac{2}{\pi} E_m$
90	右段4行目	$i = 50\sqrt{2}\sin 5 \times 10^{-6}\pi t$	$i = 50\sqrt{2}\sin 5 \times 10^6 \pi t$
103	左段16行目	$I = \sqrt{I_R^2 - (I_L - I_C)^2}$	$I = \sqrt{I_R^2 - (I_C - I_L)^2}$
	左段22行目	$\theta = \tan^{-1} \frac{I_L - I_C}{I_E}$	$\theta = \tan^{-1} \frac{I_C - I_L}{I_E}$
105	左段1行目	$\omega_r C = \frac{\omega_r L}{R^2 + (\omega_r L)^2} = 0$	$\omega_r C - \frac{\omega_r L}{R^2 + (\omega_r L)^2} = 0$