演習 流体工学 (第1版第1刷)

正誤表

ISBNコード: 978-4-485-30216-3 発行日: 2010 年 12 月 9日

作成日:2022年 3月 4日

頁	箇所	誤	正
26	表2 下から2行目 (立体角 定義)	m³/m³	m²/m²
50	下から2行目	$p = p_0 + \rho g h_b$	$p = p_0 + \rho_{\text{Hg}} g h_{\text{b}}$
51	1行目	$p_{ m g} = \rho g h_{ m b}$	$p_{ m g}$ = $ ho_{ m Hg}gh_{ m b}$
61	15行目	・・・. 表面張力σ(シグマタと読む)は,・・・	・・・. 表面張力σ(シグマと読む)は,・・・
81	下から5行目	$\cdots = 4 \text{ [m/s]} \times \frac{100 \text{ m}^2}{200 \text{ m}^2} = 2.0 \text{ [m/s]}$	$\cdots = 4 \text{ [m/s]} \times \frac{100 \text{ cm}^2}{200 \text{ cm}^2} = 2.0 \text{ [m/s]}$
97	下から3行目	$\frac{d}{D} = \sqrt{m} = 0.5331$	$\frac{d}{D} = \sqrt{m} = 0.2844$
97	下から1行目	$d = 0.160 \mathrm{m}$	$d = 0.085 \mathrm{m}$
98	下から10行目	・・・,拡大したりする垂直円錐管内 を流下する水の流れ・・・	・・・,拡大したりする水平に設置された 円錐管内を通過する水の流れ・・・
98	下から2行目	p_1 – p_2 =($ ho_{ m Hg}$ – $ ho_{ m w}$) gh	$p_1 - p_2 = (\rho_{\rm Hg} - \rho_{\rm w})gH$
99	下から1行目	$Q = \frac{\frac{\pi D_2^2}{4}}{\sqrt{1 - \left(\frac{D_1}{D_2}\right)^2}} \cdots$	$Q = \frac{\pi D_2^2}{\sqrt{1 - \left(\frac{D_1}{D_2}\right)^4}} \cdots$
139	図6-15	l_3 l_4 l_5 l_5 l_4 l_5 l_5	ℓ ₃ ℓ ₄ ℓ ₃ ℓ ₄ 4 5 ② 管3の寸法 ℓ ₃ の 寸法線の右矢印 は管4の中心まで延長
149	下から7行目	=108000 N(あるいは11000 kgf)	=10800 N(あるいは1100 kgf)
151	3行目	…動くときの抗力FDを求めよ. (詳しくは 図7-10参照)	・・・動くときの抗力 F_D を求めよ、ただし抗力係数 C_D =0.44とする. (詳しくは図7-10参照)
170	6行目	\cdots , θ =8°を式(2-151)に代入すれば \cdots	···, θ=8°を式(2-150)に代入すれば···
173	1行目	$\frac{{v_1}^2}{2g} = (z_1 - z_2)$ $\cdots + \xi \left(1 - \frac{A_1}{A_2}\right)^2 \frac{{v_1}^2}{2g} + \cdots$	$\frac{{v_2}^2}{2g} = (z_1 - z_2)$
179	3行目	$\cdots + \xi \left(1 - \frac{A_1}{A_2}\right)^2 \frac{{v_1}^2}{2g} + \cdots$	\cdots + ξ_{se} + \cdots
179	9, 10行目	11.10+0.1=11.20	11.7+0.1=11.8

늄	答证	≡□	
		正誤表	
		(弗丁城弗4闸)	

寅習 流体工学

発行日: 2022 年 2月 7日 作成日: 2022 年 3月 4日

ISBNJ- F: 978-4-485-30216-3

頁	箇所	誤	
25	注釈2の1行目	…⇒1 Aは、電気素量eを正確に…	

<u>止</u> …⇒1 kgは,プランク定数hを正確に…