

正誤表

本書中に訂正箇所等がございました。お手数をおかけしますが、下記ご参照いただけますようお願い申しあげます。 (2022 年 6 月 14 日)

■第1版第4刷(2021年1月25日発行)の修正箇所

ページ	場所	修正前	修正後	補足	掲載
227	問題4:①の計算式	$X_{G1} = 2 + 10 = 12 $ (%)	$\%X_{G1} = 2 + 10 = 12 \ (\%)$		22/6/14
228	問題4:①の計算式	$X_{G2} = 2\frac{200M}{400M} + 10\frac{200M}{500M} = 5 \text{ (\%)}$	$\frac{\%X_{G2}}{400\text{M}} = 2\frac{200\text{M}}{400\text{M}} + 10\frac{200\text{M}}{500\text{M}} = 5 \text{ (\%)}$		
		$X_G = \frac{5 \times 12}{5 + 12} = 3.53 \text{ (\%)}$	${}^{8}X_{G} = \frac{5 \times 12}{5 + 12} = 3.53 \text{ (\%)}$		
		$X_{i} = \frac{\frac{0.43 \times 200}{2} 200M}{\frac{2}{250K^{2}}} = 6.88 (\%)$	$\%X_{l} = \frac{\frac{0.43 \times 200}{2} 200M}{\frac{(250k)^{2}}{} \times 100 = 13.76 \text{ (\%)}$		22/6/14
		$X = X_G + X_l = 3.53 + 6.88 = 10.41 $ (%)	$\%X = \%X_G + \%X_l = 3.53 + 13.76 = 17.29$ (%)		
228	問題4:②の計算式	$P_{3S} = \frac{1}{\frac{X}{100}} = \frac{1}{0.1041} = 9.61 \text{ (p.u.)}$	$P_{3S} = \frac{1}{\frac{X}{100}} = \frac{1}{0.1729} = 5.78 \text{ (p.u.)}$		22/6/14
228	問題4:③の計算式	$I_{3S}(A) = P_{3S}(p.u.) \times \frac{S_{base}}{\sqrt{3} V_{base}}$	$I_{3S}(\mathrm{A}) = P_{3S}(\mathrm{p.u.}) \times \frac{S_{base}}{\sqrt{3} V_{base}}$		22/6/14
		$=9.61 \frac{200M}{\sqrt{3} 250k} = 4440 \text{ (A)}$	$=5.78 \frac{200 \text{M}}{\sqrt{3} 250 \text{k}} = 2671 \text{ (A)}$		22/3/14

■第1版第3刷(2017年2月13日発行)の修正箇所

	******		· — · · ·		
ページ	場所	修正前	修正後	補足	掲載
14	下から4行目	ガラス繊維で <mark>被服</mark> する	ガラス繊維で <mark>被覆</mark> する		18/7/18
32	☆この章で使う基礎 事項☆3行目	導体の抵抗率〔Ω/m〕	導体の抵抗率〔Ω·m〕		18/7/18
216	(13-11)式	$arepsilon = \left(\cos heta_R + \sin heta_R rac{X}{R} ight) \int i x \mathrm{d}l$ $= \left(R \cos heta_R R + X \sin heta_R ight) fI = SfI$	$arepsilon = \left(\cos heta_R + \sin heta_R rac{X}{R} ight) \int i r \mathrm{d}l$ $= \left(R\cos heta_R R + X\sin heta_R\right) fI = SfI$		19/11/26
227	下から6行目	(7) 界磁電流	(7) 界磁電流, (8) サイリスタバルブ (サイリスタ)	赤字部分を追記	18/7/18
227	問題4:①の計算式	$X_{G1} = 2 + 10 = 12 \text{ (\%)}$	$X_{G1} = 2 + 10 = 12 $ (%)		22/6/14
228	問題4:①の計算式	$X_{G2} = 2 \frac{200M}{400M} + 10 \frac{200M}{500M} = 5 \text{ (\%)}$ $X_G = \frac{5 \times 12}{5 + 12} = 3.53 \text{ (\%)}$ $X_I = \frac{\frac{0.43 \times 200}{2} 200M}{250K^2} = 6.88 \text{ (\%)}$ $X = X_G + X_I = 3.53 + 6.88 = 10.41 \text{ (\%)}$	$\%X_{G2} = 2\frac{200M}{400M} + 10\frac{200M}{500M} = 5 (\%)$ $\%X_G = \frac{5 \times 12}{5 + 12} = 3.53 (\%)$ $\%X_i = \frac{\frac{0.43 \times 200}{2} 200M}{(250k)^2} \times 100 = 13.76 (\%)$ $\%X = \%X_G + \%X_i = 3.53 + 13.76 = 17.29 (\%)$		22/6/14
228	問題4:②の計算式	$P_{3S} = \frac{1}{\frac{X}{100}} = \frac{1}{0.1041} = 9.61 \text{ (p.u.)}$	$P_{3S} = \frac{1}{\frac{X}{100}} = \frac{1}{0.1729} = 5.78 \text{ (p.u.)}$		22/6/14

ページ	場所	修正前	修正後	補足	掲載
228	問題4:③の計算式	$I_{3S}(A) = P_{3S}(p.u.) \times \frac{S_{base}}{\sqrt{3} V_{base}}$	$I_{3S}(A) = P_{3S}(p.u.) \times \frac{S_{base}}{\sqrt{3} V_{base}}$		22/6/14
		$=9.61 \frac{200M}{\sqrt{3} 250k} = 4440 \text{ (A)}$	$=5.78 \frac{200 \text{M}}{\sqrt{3} 250 \text{k}} = 2671 \text{ (A)}$		22, 3, 11
235	問題5の計算式と解答	送電端電流 $I = \frac{500k}{\sqrt{3} \cdot 6.3k \cdot 0.85} = 53.91(A)$	送電端電流 $I = \frac{500 \text{k}}{\sqrt{3} \cdot 6.3 \text{k} \cdot 0.85} = 53.91 \text{(A)}$		
		<u> </u>	$\Delta V = \frac{1}{2} \cdot \sqrt{3} \cdot I \cdot S = 418.8 (\text{V})$		20/8/12
		$\varepsilon_{\beta} = \frac{418.8}{6.3k} \times 100 = 66.5 (\%)$	$\varepsilon_{\beta} = \frac{418.8}{6.3 \text{k}} \times 100 = 6.65 (\%)$		
235	問題6の計算式	$\frac{7.14k - X_c}{70k} = 0.75$	$\frac{71.4k - X_c}{70k} = 0.75$		
		$X_c = 71.4 k - 70 k \cdot 0.75 = 18.9 \text{ (kvar)}$	$X_c = 71.4 \mathrm{k} - 70 \mathrm{k} \cdot 0.75 = 18.9 \mathrm{(kvar)}$		20/8/12
		S' = 70k/0.8 = 87.5 (kV-A)	S' = 70 k / 0.8 = 87.5 (kV-A)		20,0,12
		$\Delta P = \frac{100^2 - 87.5^2}{100^2} = 0.234 \rightarrow 23.4\%$ の減少	$\Delta P = \frac{100^2 - 87.5^2}{100^2} = 0.234 \rightarrow 23.4\%$ の減少		

■第1版第2刷(2013年10月28日発行)の修正箇所

ページ	場所	修正前	修正後	補足	掲載
14	下から4行目	ガラス繊維で <mark>被服</mark> する	ガラス繊維で <mark>被覆</mark> する		18/7/18
32	☆この章で使う基礎 事項☆3行目	導体の抵抗率〔 <mark>Ω/m</mark> 〕	導体の抵抗率〔Ω·m〕		18/7/18
68	問題4の3行目	すべき短絡故障電流 I_{3S} $[A]$ を	すべき <mark>三相短絡</mark> 電流 I_{3S} 〔A〕を		16/12/20
124	下から8行目	$K = rac{1}{\left 1 - jrac{R_g}{X_1} ight }$	$K = rac{3}{\left 1 - jrac{R_g}{X_1} ight }$		16/12/20
172	15行目	0.4〔μT〕以上磁界を浴びた場合は,	0.4〔μT〕以上磁界を常時浴び続けた場 合は,		16/12/20
172	下から3行目~	磁界についての規制は現在のところない。	磁界についての規制は 200 〔 μ T〕以下となっている。	技術基準の改正 により	16/12/20
187	15行目	東清水:現状100 (MW), 将来300 (MW))	東清水:現状300 (MW))	現在の設備に記 述を合わせた	16/12/20
191	下から6行目	在では400 (MW), ±150 (kV) の	在では 800 (MW), ± 320 (kV) の	現在の設備に記 述を合わせた	16/12/20
216	(13-11)式	$\varepsilon = \left(\cos\theta_R + \sin\theta_R \frac{X}{R}\right) \int i \mathbf{x} \mathrm{d}l$	$\varepsilon = \left(\cos\theta_R + \sin\theta_R \frac{X}{R}\right) \int i \mathbf{r} dl$		19/11/26
		$= (R\cos\theta_R R + X\sin\theta_R)fI = SfI$	$= (R\cos\theta_R R + X\sin\theta_R)fI = SfI$		
227	下から6行目	(7) 界磁電流	(7) 界磁電流, (8) サイリスタバルブ (サイリスタ)	赤字部分を追記	18/7/18
227	問題4:①の計算式	$X_{G1} = 2 + 10 = 12 \text{ (\%)}$	$\%X_{G1} = 2 + 10 = 12 \text{ (\%)}$		22/6/14
228	問題4:①の計算式	$X_{G2} = 2 \frac{200M}{400M} + 10 \frac{200M}{500M} = 5 \text{ (\%)}$	$\frac{\text{%}X_{G2}}{400\text{M}} = 2\frac{200\text{M}}{400\text{M}} + 10\frac{200\text{M}}{500\text{M}} = 5 \text{ (\%)}$		
		$X_G = \frac{5 \times 12}{5 + 12} = 3.53 \ (\%)$	$\%X_G = \frac{5 \times 12}{5 + 12} = 3.53 \text{ (\%)}$		22/6/14
		$X_{l} = \frac{\frac{0.43 \times 200}{2} 200M}{\frac{2}{250K^{2}}} = 6.88 \text{ (\%)}$	$\%X_{l} = \frac{\frac{0.43 \times 200}{2} 200M}{\frac{(250k)^{2}}{} \times 100 = 13.76 \text{ (\%)}$		22/0/14
		$X = X_G + X_I = 3.53 + 6.88 = 10.41 $ (%)	$X = X_G + X_G = 3.53 + 13.76 = 17.29$ (%)		
228	問題4:②の計算式	$P_{3S} = \frac{1}{\frac{X}{100}} = \frac{1}{0.1041} = 9.61 \text{ (p.u.)}$	$P_{3S} = \frac{1}{\frac{X}{100}} = \frac{1}{0.1729} = 5.78 \text{ (p.u.)}$		22/6/14

ページ	場所	修正前	修正後	補足	掲載
228	8行目	③ 短絡容量 P_{3s} 〔A〕は,	③ 三相短絡電流 I_{3s} $[A]$ は,		16/12/20
228	9行目	P_{3s} (A) =	$I_{3s}(A) =$		16/12/20
228	問題4:③の計算式	$P_{3S}(A) = P_{3S}(p.u.) \times \frac{S_{base}}{\sqrt{3} V_{base}}$	$I_{3S}(A) = P_{3S}(p.u.) \times \frac{S_{base}}{\sqrt{3} V_{base}}$		22/6/14
		$=9.61\frac{200M}{\sqrt{3}250k}=4440 \text{ (A)}$	$=5.78 \frac{200M}{\sqrt{3}250k} = 2671 \text{ (A)}$		22/ 3/ 11
235	問題5の計算式と解答	送電端電流 $I = \frac{500k}{\sqrt{3} \cdot 6.3k \cdot 0.85} = 53.91(A)$	送電端電流 $I = \frac{500\text{k}}{\sqrt{3} \cdot 6.3\text{k} \cdot 0.85} = 53.91(\text{A})$		
		$\Delta V = \frac{1}{2} \cdot \sqrt{3} \cdot I \cdot S = 418.8 (\text{V})$	$\Delta V = \frac{1}{2} \cdot \sqrt{3} \cdot I \cdot S = 418.8 (\text{V})$		20/8/12
		$\varepsilon_{\beta} = \frac{418.8}{6.3k} \times 100 = 66.5 (\%)$	$\varepsilon_{\beta} = \frac{418.8}{6.3 \text{k}} \times 100 = 6.65 (\%)$		
235	問題 6 の計算式	$\frac{7.14k - X_c}{70k} = 0.75$	$\frac{71.4k - X_c}{70k} = 0.75$		
		$X_c = 71.4 k - 70 k \cdot 0.75 = 18.9 \text{ (kvar)}$	$X_c = 71.4 \text{k} - 70 \text{k} \cdot 0.75 = 18.9 \text{ (kvar)}$		20/8/12
		S' = 70k/0.8 = 87.5 (kV·A)	S' = 70 k/0.8 = 87.5 (kV·A)		, ,
		$\Delta P = \frac{100^2 - 87.5^2}{100^2} = 0.234 \rightarrow 23.4\%$ の減少	$\Delta P = \frac{100^2 - 87.5^2}{100^2} = 0.234 \rightarrow 23.4\%$ の減少		

■第1版第1刷(2011年1月7日発行)の修正箇所

ページ	場所	修正前	修正後	補足	掲載
14	下から4行目	ガラス繊維で <mark>被服</mark> する	ガラス繊維で <mark>被覆</mark> する		18/7/18
32	☆この章で使う基礎 事項☆3行目	導体の抵抗率〔Ω/m〕	導体の抵抗率〔 <mark>Ω·m</mark> 〕		18/7/18
44	下から3行目	$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} \times \begin{vmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{vmatrix} \downarrow$ $= \begin{vmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\ a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \end{vmatrix}$	$ \begin{array}{ c c c } \hline a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \times \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} \downarrow $ $ = \begin{bmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\ a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \end{bmatrix} $	行列式の記号 () を, 行列 の記号([]) へ	15/1/27
50	(5-14)式	$\begin{vmatrix} \dot{V}_s \\ \dot{I}_s \end{vmatrix} = \begin{vmatrix} \cosh \dot{\gamma} X & \dot{Z}_s \sinh \dot{\gamma} X \\ \frac{1}{Z_s} \sinh \dot{\gamma} X & \cosh \dot{\gamma} X \end{vmatrix} \times \begin{vmatrix} \dot{V}_r \\ \dot{I}_r \end{vmatrix}$ $= \begin{vmatrix} \dot{A} & \dot{B} \\ \dot{C} & \dot{D} \end{vmatrix} \times \begin{vmatrix} \dot{V}_r \\ \dot{I}_r \end{vmatrix}$	$\begin{bmatrix} \dot{V}_s \\ \dot{I}_s \end{bmatrix} = \begin{bmatrix} \cosh \dot{\gamma} X & \dot{Z}_s \sinh \dot{\gamma} X \\ \frac{1}{\dot{Z}_s} \sinh \dot{\gamma} X & \cosh \dot{\gamma} X \end{bmatrix} \times \begin{bmatrix} \dot{V}_r \\ \dot{I}_r \end{bmatrix}$ $= \begin{bmatrix} \dot{A} & \dot{B} \\ \dot{C} & \dot{D} \end{bmatrix} \times \begin{bmatrix} \dot{V}_r \\ \dot{I}_r \end{bmatrix}$	行列式の記号 () を, 行列 の記号([]) へ	
54	(5-23)式	$Q_r = -\frac{V_s^2}{Z}\sin\theta + \frac{V_s V_r}{Z}\sin(\delta - \theta)$ $= -\frac{V_s^2}{Z}\cos\alpha + \frac{V_s V_r}{Z}\cos(\delta + \alpha)$	$Q_r = -\frac{V_r^2}{Z}\sin\theta + \frac{V_s V_r}{Z}\sin(\delta - \theta)$ $= -\frac{V_r^2}{Z}\cos\alpha + \frac{V_s V_r}{Z}\cos(\delta + \alpha)$		15/1/27
56	図5-16左下部	$\left(\frac{V_r^2R}{Z^2}, \frac{V_r^2X}{Z^2}\right)$	$\left(-\frac{V_r^2 R}{Z^2}, -\frac{V_r^2 X}{Z^2}\right)$	赤字部分を追加	15/1/27
68	問題4の3行目	すべき短絡故障電流 I_{3S} $\left(A \right)$ を	すべき三相短絡電流 I_{3S} $\left(A \right)$ を		16/12/20
95	10行目	$-\frac{Z^{2}Q + XV_{r}^{2}}{V_{r}(2P \cdot R + 2Q \cdot X + V_{r}^{2})}V_{r}$	$-\frac{Z^{2}Q + XV_{r}^{2}}{V_{r}(2P \cdot R + 2Q \cdot X + \frac{2}{2}V_{r}^{2} - \frac{V_{s}^{2}}{V_{r}})} \Delta Q}{V_{r}}$	赤字部分を追加	15/1/27
95	11行目	$-\frac{X\Delta Q}{2R \cdot Q + V_r^2}$	$-\frac{X\Delta Q}{2X \cdot Q + V_r^2}$		15/1/27
106	図8-6のなかの図題	(c) 送電線 <mark>逆</mark> 相分回路	(c) 送電線零相分回路		15/1/27
124	11行目	$\dot{V}_{b} = \left[(a^{2} - 1) + \frac{1}{1 - j\frac{R_{g}}{X_{1}}} \right] \dot{E}_{a}$	$\dot{V}_b = \left[(a^2 - 1) + \frac{3}{1 - j\frac{R_g}{X_1}} \right] \dot{E}_a$		15/1/27

ページ	場所	修正前	修正後	補足	掲載
124	13行目	$K = rac{1}{\left 1 - jrac{R_g}{X_1} ight }$	$K = rac{3}{\left 1 - jrac{R_g}{X_1} ight }$		16/12/20
160	下側の図の図番	図10-12	図 10- <mark>13</mark>		15/1/27
165	6行目	-60 (ms) 以下, その他の送電線で	-60 (ms) 以下, 500 (kV) 以外の超高 圧送電線では430 (V) -1 (s) 以下, そ の他の送電線で		15/1/27
172	15行目	0.4〔μT〕以上磁界を <mark>浴びた</mark> 場合は,	0.4〔μT〕以上磁界を常時浴び続けた場合は,		16/12/20
172	下から3行目~	磁界についての規制は現在のところない。	磁界についての規制は 200 (μ T) 以下となっている.	技術基準の改正 により	16/12/20
187	15行目	東清水:現状100 (MW), 将来300 (MW))	東清水:現状300 (MW))	現在の設備に記 述を合わせた	16/12/20
191	下から6行目	在では400 (MW), ±150 (kV) の	在では800 (MW), ±320 (kV) の	現在の設備に記 述を合わせた	16/12/20
215	中央の図の図番	⊠ 13-16	図 13- 19		15/1/27
216	(13-11)式	$\varepsilon = \left(\cos\theta_R + \sin\theta_R \frac{X}{R}\right) \int i\mathbf{x} dl$ $= \left(R\cos\theta_R R + X\sin\theta_R\right) fI = SfI$	$egin{aligned} arepsilon &= \left(\cos heta_R + \sin heta_R rac{X}{R} ight)\!\!\int\!ir\mathrm{d}l \ &= \left(R\cos heta_R R + X\sin heta_R ight)\!fI = SfI \end{aligned}$		19/11/26
223	図 13-14	(),	(100000RIV 110MoR/JJ 1 2J 1	※1と差替え	15/1/27
227	下から6行目	(7) 界磁電流	(7) 界磁電流, (8) サイリスタバルブ (サ イリスタ)		18/7/18
227	問題4:①の計算式	$X_{G1} = 2 + 10 = 12 \text{ (\%)}$	$X_{G1} = 2 + 10 = 12 \text{ (\%)}$		22/6/14
	問題4:①の計算式	$X_{G2} = 2\frac{200M}{400M} + 10\frac{200M}{500M} = 5 \text{ (\%)}$ $X_G = \frac{5 \times 12}{5 + 12} = 3.53 \text{ (\%)}$ $X_I = \frac{\frac{0.43 \times 200}{2} 200M}{250K^2} = 6.88 \text{ (\%)}$ $X = X_G + X_I = 3.53 + 6.88 = 10.41 \text{ (\%)}$	$\%X_{G2} = 2\frac{200M}{400M} + 10\frac{200M}{500M} = 5 \text{ (\%)}$ $\%X_G = \frac{5 \times 12}{5 + 12} = 3.53 \text{ (\%)}$ $\%X_I = \frac{\frac{0.43 \times 200}{2} 200M}{(250k)^2} \times 100 = 13.76 \text{ (\%)}$ $\%X = \%X_G + \%X_I = 3.53 + 13.76 = 17.29 \text{ (\%)}$		22/6/14
228	問題4:②の計算式	$P_{3S} = \frac{1}{\frac{X}{100}} = \frac{1}{0.1041} = 9.61 \text{ (p.u.)}$	$P_{3S} = \frac{1}{\frac{X}{100}} = \frac{1}{0.1729} = 5.78 \text{ (p.u.)}$		22/6/14
228	8行目	③ 短絡容量 P_{3s} 〔A〕は、	③ 三相短絡電流 I_{3s} 〔A〕は,		16/12/20
228	9行目	$P_{ss}(A) =$	I_{3s} (A) =		16/12/20
228	問題4:③の計算式	$P_{3S}(A) = P_{3S}(p.u.) \times \frac{S_{base}}{\sqrt{3} V_{base}}$, bust		22/6/14
		$=9.61 \frac{200M}{\sqrt{3} 250k} = 4440 \text{ (A)}$	V 0 2001		
235	問題5の計算式と解答		$\Delta V = \frac{1}{2} \cdot \sqrt{3} \cdot I \cdot S = 418.8 (\text{V})$		20/8/12
		$\varepsilon_{\beta} = \frac{418.8}{6.3k} \times 100 = 66.5 (\%)$	$\varepsilon_{\beta} = \frac{418.8}{6.3 \text{k}} \times 100 = 6.65 (\%)$		

ページ	場所	修正前	修正後	補足	掲載
235	問題6の計算式	$\frac{7.14k - X_c}{70k} = 0.75$	$\frac{71.4k - X_c}{70k} = 0.75$		
		$X_c = 71.4 \frac{k}{k} - 70 \frac{k}{k} \cdot 0.75 = 18.9 \text{ (kvar)}$	$X_c = 71.4 \text{k} - 70 \text{k} \cdot 0.75 = 18.9 \text{ (kvar)}$		20/8/12
		$S' = 70 \frac{k}{0.8} = 87.5 \text{ (kV-A)}$	S' = 70 k / 0.8 = 87.5 (kV·A)		20/6/12
		$ \Delta P = \frac{100^2 - 87.5^2}{100^2} = 0.234 \rightarrow 23.4\%$ の減少	$ \Delta P = \frac{100^2 - 87.5^2}{100^2} = 0.234 \rightarrow 23.4\%$ の減少		

